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ABSTRACT

Let X be a smooth projective curve over a finite field Fq. Let ρ be a

continuous representation π(X) → GLn(F ), where F = Fl((t)) with Fl

being another finite field of order prime to q.

Assume that ρ|π(X̄) is irreducible. De Jong’s conjecture says that in this

case ρ(π(X̄)) is finite. As was shown in the original paper of de Jong,

this conjecture follows from an existence of an F -valued automorphic

form corresponding to ρ is the sense of Langlands. The latter follows, in

turn, from a version of the Geometric Langlands conjecture.

In this paper we sketch a proof of the required version of the geomet-

ric conjecture, assuming that char(F ) 6= 2, thereby proving de Jong’s

conjecture in this case.

1. Introduction

1.1. The purpose of this note is to indicate the proof of a partial case of

de Jong’s conjecture, proposed in [4]. Let us recall its formulation, combining

Conjecture 2.3 and Theorem 2.17 of loc. cit.:

Let X be a smooth projective curve over a finite field Fq , and let ρ be a

continuous representation

π1(X)→ GLn(F),

where F = Fl ((t)) with Fl being another finite field of order coprime to q.

Assume that ρ|π1(X) is absolutely irreducible (here, as usual, π1(X) ⊂ π1(X)

denotes the geometric fundamental group).
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Conjecture 1.2: Under the above circumstances, ρ(π1(X)) is finite.

In the same paper, de Jong showed that Conjecture 1.2 follows from a version

of the Langlands conjecture with F-coefficients. (The corresponding version of

the Langlands conjecture with Qℓ -coefficients is now a theorem of Lafforgue.)

Namely, consider the double quotient GLn(K)\GLn(A )/GLn (O), where K is

the global field corresponding to X , A is the ring of adeles, and O is the subring

of integral adeles. (Note that the above double quotient identifies with the set

of isomorphism classes of rank n vector bundles on X , denoted Bunn(Fq ).) For

each place x ∈ |X | one introduces the Hecke operators T i
x, i = 1, . . . , n acting

on the space of F-valued functions on Bunn(Fq ).

Given a representation ρ: π1(X) → GLn(F), we say that a function f :

Bunn(Fq )→ F is a Hecke eigenform with eigenvalues corresponding to ρ, if for

all x and i

T i
x(f) = λi

x · f,

with λi
x = Tr(Λi(ρ(Frx))), where Frx ∈ π1(X) is the Frobenius element cor-

responding to x (defined up to conjugacy), and Λi designates the i-th exterior

power of the representation ρ.

In addition, in the space of all F-valued functions on Bunn(Fq ) one singles

out a subspace, stable under the operators T i
x, of cuspidal functions. As in the

n = 2 case, one shows that the subspace of cuspidal functions with a given

central character is finite-dimensional.

Here is the relevant version of the Langlands conjecture:

Conjecture 1.3: Let ρ be as in Conjecture 1.2. Then there exists a (non-zero)

cuspidal Hecke-eigenform fρ with eigenvalues corresponding to ρ.

By arguments of Sect. 4 of [4], one shows that Conjecture 1.3 implies Con-

jecture 1.2. In this paper we will be concerned with the proof of Conjecture

1.3.

1.4. Unfortunately, the proof of Conjecture 1.3 is not complete. Namely, we

will have to rely on two pieces of mathematics that do not exist in the published

literature.

One is the theory of étale sheaves with F coefficients, which should be parallel

to the theory of F′-adic sheaves, where F′ is a local field of characteristic 0.

However, we do not expect that the construction of this theory is in any

way different from its F′-counterpart. Namely, we first consider étale sheaves

of Fl [t]/ti-modules, and define the category of O-sheaves as the appropriate

2-projective limit, where O is the local ring Fl [[t]]. We define the category of
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F-sheaves by inverting t, i.e., by quotienting out the category of O-sheaves by

t-torsion ones.

Thus, from now on we will assume the existence of such a theory, with for-

mal properties analogous to that of F′-sheaves. In particular, we assume the

existence of the category D(Y) of bounded complexes with constructible co-

homology corresponding to an algebraic variety Y over Fq , stable under the

6-functors. From this category one produces the abelian category of perverse

sheaves, denoted P (Y).

Finally, we must have the sheaf-function correspondence. In other words,

given an object K ∈ D(Y), by taking traces of the Frobenius elements, we

obtain an F-valued function on Y(Fq ), and this operation is compatible with

the operations of taking inverse image, direct image with compact supports and

tensor product.

1.5. That said, our goal will be to prove a geometric version of Conjecture 1.3

(we refer the reader to Sect. 3.1 for the precise formulation of the latter).

Namely, to a representation ρ, as in Conjecture 1.2, we would like to asso-

ciate an object Sρ ∈ D(Bunn), where Bunn denotes the moduli stack of rank n

bundles on X , such that Sρ is cuspidal and satisfies the Hecke eigencondition

with respect to ρ. If such Sρ exists, then by applying the sheaf-function cor-

respondence, we obtain a function fρ on Bunn(Fq ), which is a cuspidal Hecke

eigenform with eigenvalues corresponding to ρ.

Our main result is Theorem 3.5, which says that if l > 2n, and ρ is as in

Conjecture 1.2, then the object Sρ ∈ D(Bunn) with the required properties

exists.

In fact, we state and indicate the proof of a stronger result, namely, Theorem

3.6, which asserts the existence of Sρ for any l 6= 2.

To summarize, this paper proves Conjecture 1.2 for l 6= 2 modulo the theory

of F-sheaves, and one more unpublished result, discussed below.

1.6. Even in order to formulate the geometric analog of Conjecture 1.3, i.e.,

Conjecture 3.2, one needs to rely on the realization of the category of represen-

tations of the Langlands dual group via spherical perverse sheaves on the affine

Grassmannian.

This result was first announced by V. Ginzburg in the 1995’s for perverse

sheaves with coefficients in a field of characteristic zero. Recently, in [11],

I. Mirković and K. Vilonen have established this result in a far greater gen-

erality (cf. Theorem 12.1 in loc. cit).
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Namely, they work over a ground field of complex numbers, and consider

sheaves in the analytic topology. They show that the category of spherical

perverse sheaves with A-coefficients, where A is an arbitrary Noetherian com-

mutative ring of finite cohomological dimension, is equivalent to the category of

representations of the group-scheme ǦA on finitely generated A-modules, where

ǦA is the split reductive group, whose root datum is dual to that of G.

For the purposes of this paper, however, we need an extension of the result

of [11] to the case of an arbitrary ground field (in practice taken to be Fq ), and

sheaves with F- and O-coefficients. From examining [11] it appears that the

proof presented in loc. cit. carries over to this case. Therefore, we state the

corresponding result as Theorem 2.2.

1.7. The geometric Langlands conjecture with coefficients of characteristic 0

has been proved in [5] and [8]. The proof of Theorem 3.5 follows verbatim the

approach of loc. cit., with one exception:

This exception is the discussion related to the notion of symmetric power of

a local system (cf. Sect. 5), and this is the only original piece of work done in

this paper.

Let us now describe the contents of the paper:

In Sect. 2 we recall the definition of affine Grassmannians and review the

relevant versions of the geometric Satake equivalence, i.e., the realization of the

Langlands dual group via spherical perverse sheaves, following [11]. We also

introduce the Hecke stack, Hecke functors and the notion of Hecke eigensheaf.

Starting from Sect. 3 we restrict ourselves to the case G = GLn. In the

beginning of Sect. 3 we formulate several versions of the geometric Langlands

conjecture for GLn, and state the main result, Theorem 3.5, which amounts to

proving one of the forms of the above conjecture when char(F) > 2n. We also

formulate a stronger result, Theorem 3.6, which claims the ultimate form of the

geometric Langlands conjecture when F 6= 2.

In the rest of Sect. 3 we explain, following closely the exposition in [5], how

Theorem 3.5 can be reduced to a certain vanishing statement, Theorem 4.2.

In Sect. 4 we formulate and prove Theorem 4.2, following [8]. The proof essen-

tially amounts to introducing a certain quotient triangulated category D̃(Bunn)

of D(Bunn) and showing that the averaging functor Avd
E : D(Bunn)→ D(Bunn)

(whose vanishing for large d we are trying to prove) is well-defined and exact on

the above quotient.

The proof of the latter fact essentially consists of two steps:

(1) Showing that the elementary functor Av1
E : D̃(Bunn)→ D̃(Bunn) is exact.
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(2) Showing that the exactness of Av1
E implies the exactness of Avd

E for any

d.

Step (1) requires no modification compared to the case of characteristic 0

coefficients if char(F) > 2n considered in [8], and a minor modification if we

only assume char(F) 6= 2 (the latter case is treated in the Appendix).

Step (2) amounts to Proposition 4.6(2) and this is the only place in the paper

that requires some substantial work. Essentially, Avd
E is the d-th symmetric

power (along X) of Av1
E , and our goal is to express one through another. This

is achieved by introducing a somewhat non-standard notion of external exterior

power of a local system on a curve.

In Sect. 5 we first recall some notions from linear algebra, namely, the two ver-

sions of symmetric and exterior powers of a vector space and the corresponding

Koszul complexes, when working over a field of positive characteristic.

We then review some basic properties of the construction of the (external)

symmetric power of a local system on a curve, in particular, its behavior with

respect to the perverse t-structure.

And finally, we introduce two versions of an external exterior power of a local

system, and construct the corresponding external Koszul complex, which is used

in the proof of Proposition 4.6(2) mentioned above.

In Appendix A, we indicate how, by refining some arguments of [8], one

can relax the condition that char(F) > 2n and treat the case of any F of

characteristic different from 2.

Finally, in Appendix B we prove Theorem 2.6, which is a version of the

geometric Satake equivalence over a symmetric power of the curve X .

1.8. Acknowledgments. I would like to thank V. Drinfeld for many helpful

discussions.

This work was supported by a long-term fellowship at the Clay Mathematics

Institute, and by a grant from DARPA via NSF, DMS 0105256.

2. Review of the geometric Satake equivalence

From now on, we will work over an arbitrary algebraically closed ground field k

of characteristic prime to l, and X will be a smooth projective curve /k.

In this section G will be an arbitrary reductive group over k. By Ǧ we will

denote its Langlands dual group, which we think of as a smooth group-scheme

defined over Z. We will denote by ǦO the corresponding group-scheme over

O and by ǦF the corresponding reductive group over F. We will denote by
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Rep(ǦF) the category of rational representations of ǦF on finite-dimensional

F-vector spaces.

2.1. Let x ∈ X be a point. If G is an algebraic group, let GrG,x denote the

affine Grassmannian of G on X at x. In other words, GrG,x is the ind-scheme

classifying the data of a G-bundle PG on X with a trivialization β on X − x,

i.e., PG|X−x ≃ P
0
G|X−x, where P0

G denotes the trivial G-bundle.

According to a theorem of Beauville and Laszlo, the data of (PG, β) is equiva-

lent to one, where instead of X we use the formal disc Dx around x, and instead

of X − x the formal punctured disc D∗x, cf. [7].

Let G(Kx) (resp., G(Ox)) be the group ind-scheme (resp., group-scheme) clas-

sifying maps D∗x → G (resp., Dx → G). The description of GrG,x via Dx implies

that the group ind-scheme G(Kx) acts on it by changing the data of β. The ac-

tion of G(Ox) has the property that every finite-dimensional closed subscheme

of GrG,x is contained in another finite-dimensional closed subscheme of GrG,x,

stable under the action of G(Ox). Therefore, the category PG(Ox)(GrG,x) of

G(Ox)-equivariant perverse sheaves (with F-coefficients) on GrG,x makes sense.

The basic fact is that PG(Ox)(GrG,x) carries a natural structure of monoidal

category. We refer to [7], where this is discussed in detail.

We will need the following result, which is a generalization of Theorem 12.1

of [11] to the case of an arbitrary ground field:

Theorem 2.2: The monoidal structure on PG(Ox)(GrG,x) admits a natural

symmetric commutativity constraint. The resulting tensor category is equiva-

lent to the category Rep(ǦF).

Let Aut(Dx) be the group-scheme of automorphisms of the formal disc Dx.

By functoriality, we have a natural action of Aut(Dx) on GrG,x. A part of

Theorem 2.2 is the following statement (cf. Proposition 2.2 of [11]):

Corollary 2.3: Every object of PG(Ox)(GrG,x) is Aut(Dx)-equivariant.

Theorem 2.2 remains valid in the context of O-coefficients. Namely, let us

denote by PG(Ox)(GrG,x)O the category of O-valued G(Ox)-equivariant perverse

sheaves on GrG,x.∗ Then PG(Ox)(GrG,x)O is also a tensor category, equivalent

* Since O is a ring and not a field, Serre duality on the derived category of
O-modules does not preserve the t-structure. Therefore, the corresponding de-
rived category of O-sheaves (as in the Zl case) possesses two natural perverse
t-structures, interchanged by Verdier duality. Here we will use the “usual” one,
for which the category of perverse sheaves is Noetherian.
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to the category of representations of the group-scheme ǦO on finitely generated

O-modules.

2.4. We will now discuss a version of Theorem 2.2, where instead of one point

x we have several points moving along the curve X . For a positive integer d, let

Grd
G be the symmetrized version of the Beilinson–Drinfeld Grassmannian living

over X(d). Namely, a point of Grd
G is a triple (D,PG, β), where D is an effective

divisor of degree d on X , i.e., a point of X(d), PG is a principal G-bundle on X ,

and β is a trivialization of PG off the support of D.

The formal disc version of Grd
G can be spelled out as follows. Let S be a

(test) scheme and let DS be an S-point of X(d). Let Γ be the incidence divisor

in X ×X(d), and let ΓS be its pull-back to X × S. Let k · ΓS denote the k-th

infinitesimal neighborhood of ΓS and let Γ̂S be the completion of X × S along

ΓS . Note that it makes sense to speak about principal G-bundles on Γ̂S , and of

isomorphisms of two such bundles on Γ̂∗S := Γ̂S − ΓS .

Thus, an S-point of Grd
G is a triple (DS ,PG, β), where DS is an S-point of

X(d), PG is a principal G-bundle on Γ̂S , and β is an isomorphism PG ≃ P
0
G on

Γ̂∗S .

For a partition d : d = d1 + · · · + dm, let sumd denote the natural

morphism X(d1) × · · · × X(dm) → X(d). Let X
(d)
disj denote the open subset of

X(d1) × · · · × X(dm) corresponding to the condition that all the divisors

Di ∈ X(di), i = 1, . . . , m have pairwise disjoint supports. We have:

(1) X
(d)
disj ×

X(d)

Grd
G ≃ X

(d)
disj ×

X(d1)×···×X(dm)

(Grd1

G × · · · ×Grdm

G ).

For an integer k, let Gd
k denote the group-scheme over X(d), whose S-points

over a given DS ∈ Hom(S, X(d)) is the group of maps k ·ΓS → G. Let Gd be the

group-scheme lim
←−
Gd

k . We have a natural action of Gd on Grd
G. Note that the

fiber of Gd at D = Σdi · xi with xi’s distinct is ΠG(Oxi
). These isomorphisms

are easily seen to be compatible with the factorization isomorphism of (1).

We let PG
d

(Grd
G) denote the category of Gd-equivariant perverse sheaves on

Grd
G. We claim that for d = d1 + d2 there exists a natural convolution functor

(2) ⋆: PG
d1

(Grd1

G )× PG
d2

(Grd2

G )→ PG
d

(Grd
G).

Indeed, consider the ind-scheme Convd1,d2

G that classifies the data of

(D1, D2,P
1
G, β1,PG, β),

where Di ∈ X(di), P1
G,PG are principal G-bundles on X , β1 : P1

G|X−D1 ≃

PG|X−D1 , β : PG|X−D2 ≃ P
0
G|X−D2 . We can view Convd1,d2

G as a fibration
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over Grd2

G with the typical fiber Grd1

G . Thus, for any perverse sheaf T2 on Grd2

G

and a Gd1-equivariant perverse sheaf T1 on Grd1

G we can associate their twisted

external product T1�̃T2 ∈ P (Convd1,d2

G ). We also have a natural projection

p: Convd1,d2

G → Grd
G that sends a data (D1, D2,P

1
G, β1,PG, β) as above to

(D1 + D2,P
1
G, β ◦ β1). We set

T1 ⋆ T2 := p!(T1�̃T2).
The fact that the resulting object of the derived category is a perverse sheaf

follows from the semi-smallness of convolution, cf. [11], Sect. 4.1. The fact that

this perverse sheaf if Gd-equivariant is evident, since all the objects involved in

the construction, when viewed over X(d), carry a natural Gd-action.

2.5. Note that if C is an F-linear abelian category, it makes sense to speak

about objects of C, endowed with an action of the algebraic group ǦF. We will

take C to be the category of F-perverse sheaves on various schemes.

We introduce the category P Ǧ,d to consist of perverse sheaves K on

X(d), endowed with the following structure: For any ordered partition d : d =

d1 + · · ·+ dm, the pull-back

Kd := sum∗
d
(K)|

X
(d)
disj

carries an action of (ǦF)×m, such that the following two conditions hold:

1) If d
′
: d = d′1 + · · ·+ d′m′ is a refinement of d, then the isomorphism

Kd|
X

(d′)
disj

≃ Kd
′

is compatible with the (Ǧ)×m-actions via the diagonal map (ǦF)×m→(ǦF)×m′ .

2) If d
′

: d = d′1 + · · · + d′m′ is obtained from d by a permutation, then

the isomorphism of perverse sheaves induced by the isomorphism Xd → Xd
′

is

compatible with the (ǦF)×m-actions.

Note that for d = d1 + d2, the functor K1,K2 7→ sumd1,d2(K1�K2) gives rise

to a functor

(3) ⋆: P Ǧ,d1 × P Ǧ,d2 → P Ǧ,d.

The next result follows formally from Theorem 2.2:

Theorem 2.6: For every d there is a canonical equivalence of categories

PG
d

(Grd
G)→ P Ǧ,d, compatible with the functors ⋆ of (2) and (3).

The proof will be given in Appendix B.
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We will denote by P Ǧ,d
O

the corresponding version of P Ǧ,d with O-coefficients.

Theorem 2.6 remains valid in this context as well, i.e., P Ǧ,d
O

is equivalent to the

category PG
d

(Grd
G)O of G-equivariant perverse sheaves with O-coefficients on

Grd
G.

2.7. Let us take d = 1 and denote the corresponding ind-scheme Gr1G by

GrG,X , and the corresponding group-scheme G1 simply by G. Note that GrG,X is

just the relative over X version of GrG,x, i.e., we have a projection

s: GrG,X → X and its fiber over x ∈ X is GrG,x.

It follows from Corollary 2.3, that to an object V ∈ Rep(ǦF) one can canon-

ically attach a perverse sheaf TV,X ∈ PG(GrG,X). In terms of the equivalence

of Theorem 2.6, TV,X corresponds to the constant sheaf FX ⊗V [1], as an object

of P Ǧ,1.

Let BunG be the moduli stack of principal G-bundles on X . Let us recall the

definition of the Hecke functors H : Rep(ǦF)×D(BunG)→ D(BunG×X).

Let HG,X be the Hecke stack, i.e, the relative over BunG version of GrG,X .

More precisely, HG,X classifies the data of (x,PG,P ′G, β), where x ∈ X , PG,P ′G
are principal G-bundles on X , and β is an isomorphism PG|X−x ≃ P

′
G|X−x.

We will denote by
←

h (resp.,
→

h) the natural map of stacks HG,X → BunG that

remembers the data of P ′G (resp., PG). We will view HG,X as a fibration over

BunG via
←

h , with the typical fiber GrG,X :

BunG

←

h
←−HG,X

→

h×s
−→BunG×X.

Due to the G-equivariance condition, to every S ∈ D(BunG) and T ∈

PG(GrG,X) we can associate their twisted external product T �̃S ∈ D(HG,X).

We define the Hecke functor

H(V,S) := (
→

h × s)!(TV,X�̃S) ∈ D(BunG×X).

More generally, if V1, . . . , Vd is a collection of objects of Rep(ǦF), by iterating

the above construction, for S ∈ D(BunG) we obtain an object

H(V1 � · · ·� Vd,S) ∈ D(BunG×Xd).

As in [8], one shows that for any S as above, H(V1� · · ·�Vd,S) is ULA with

respect to the projection BunG×Xd → Xd.
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Proposition 2.8: Let V1, V2 be two objects of Rep(ǦF).

(1) Let σ be the transposition acting on X × X . We have a functorial

isomorphism

σ∗(H(V1 � V2,S)) ≃ H(V2 � V1,S),

whose square is the identity map.

(2) The restriction H(V1 � V2,S)|BunG×∆(X) identifies canonically with

H(V1 ⊗ V2,S)[1].

The above proposition allows us to introduce Hecke eigensheaves. Let EǦ be

a ǦF-local system on X , viewed as a tensor functor V 7→ EV
Ǧ

from Rep(ǦF) to

the category of F-local systems on X .

We say that SEǦ
∈ D(BunG) is a Hecke eigensheaf with respect to EǦ if we

are given an isomorphism of functors Rep(ǦF)→ D(BunG):

(4) α(V ) : H(V,SEǦ
) ≃ SEǦ

�EV
Ǧ

[1],

such that the conditions 1) and 2) below are satisfied.

Before formulating them, note that for any collection V1, . . . , Vd of objects of

Rep(ǦF), by iterating α(·) we obtain as isomorphism

H(V1 � · · ·� Vd,SEǦ
) ≃ SEǦ

�EV1

Ǧ
[1]� · · ·�EVm

Ǧ
[1].

We require that for V1, V2 ∈ Rep(ǦF), the following two diagrams commute:

1)

H(V1 � V2,SEǦ
) //

��

SEǦ
�EV1

Ǧ
[1]�EV2

Ǧ
[1]

��

σ∗(H(V2 � V1,SEǦ
)) // SEǦ

� σ∗(EV2

Ǧ
[1]� EV1

Ǧ
[1])

2)

H(V1 � V2,S)|BunG×∆(X)
//

��

S �EV1

Ǧ
[1]�EV2

Ǧ
[1]|BunG ×∆(X)

��

H(V1 ⊗ V2,S)[1] // S �EV1⊗V2

Ǧ
[1]

2.9. We need to introduce one more piece of notation related to the Hecke

action.

Let Hd
G be the relative (over BunG) version of Grd

G. We have the diagram

BunG

←

h
←−Hd

G

→

h×s
−→BunG×X(d),
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and we view Hd
G as a fibration over BunG via

←

h with the typical fiber Grd
G.

As in Sect. 2.7, for an object T ∈ PG
d

(Grd
G) and S ∈ D(BunG) we can form

their twisted external product T �̃S ∈ D(Hd
G). We define

H(T ,S) := (
→

h × s)!(T �̃S) ∈ D(BunG×X(d)).

We set T ⋆S ∈ D(BunG) to be the direct image of H(T ,S) under BunG×X(d) →

BunG.

By construction, for T1 ∈ PG
d1

(Grd1

G ) and T2 ∈ PG
d2

(Grd2

G ), we have a func-

torial isomorphism

(T1 ⋆ T2) ⋆ S ≃ T1 ⋆ (T2 ⋆ S).

We will denote by the same symbol ⋆ the resulting action of P Ǧ,d on D(BunG).

3. Geometric Langlands conjecture

In this section we will work with F-sheaves, unless specified otherwise.

3.1. From now on we will specialize to the case G = GLn. In this case we will

denote BunG by Bunn, and think of principal G-bundles as of rank n vector

bundles on X .

Let V0 denote the tautological n-dimensional representation of Ǧ = GLn. A

Ǧ-local system on X is the same thing as an n-dimensional local system, the

correspondence being EǦ 7→ E := EV0

EǦ
.

Here is the formulation of the geometric Langlands conjecture:

Conjecture 3.2: If E is an absolutely irreducible n-dimensional local system

on X , then there exists a perverse sheaf SE ∈ P (Bunn), which is a Hecke

eigensheaf with respect to E. Moreover, SE is cuspidal and irreducible on every

connected component of Bunn.

If SE ∈ D(Bunn) and E is an n-dimensional local system one can formulate

a condition, weaker than the Hecke eigenproperty: We say that SE is a weak

Hecke eigensheaf with respect to E, if we are given isomorphisms α(·) as in (4)

for V of the form Λi(V0), i = 1, . . . , n.

The weak form of the geometric Langlands conjecture says that if E is an

irreducible local system on X , then there exists a perverse sheaf SE ∈ P (Bunn),

which is a weak Hecke eigensheaf with respect to E, such that SE is cuspidal

and irreducible on every connected component of Bunn.

Evidently, the existence of a weak Hecke eigensheaf corresponding to E is

sufficient to guarantee the existence of an F-valued cuspidal Hecke eigenform
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corresponding to (the π1-representation, corresponding to E) in the sense of

Conjecture 1.3.

Yet another form of the Hecke eigencondition, this time specific to GLn is as

follows:

For an n-dimensional local system E, we say that SE ∈ D(Bunn) has a GLn-

Hecke eigenproperty with respect to E if we are given an isomorphism α(·) only

for V = V0, which satisfies condition 1) of the definition of Hecke eigensheaves

for V1 ≃ V2 ≃ V .

Conjecture 3.3: Let E be an arbitrary n-dimensional local system. Then

if SE ∈ D(Bunn) has a GLn-Hecke eigenproperty with respect to E, then it

satisfies, in fact, the full Hecke property.

When char(F) = 0, the above conjecture was essentially proved in [6], using

Springer correspondence. We do not have any real evidence in favor of this

conjecture when char(F) 6= 0 (except in the case when SE is cuspidal and

perverse, which we consider in Appendix A). However, we have the following

assertion:

Lemma 3.4: Assume that char(F) > n, and let SE ∈ D(Bunn) have a GLn-

Hecke eigenproperty with respect to E. Then SE is a weak Hecke eigensheaf

with respect to E.

The proof of this lemma given in [5] in the case when char(F) = 0 is applicable

here, since the proof relies on the semi-simplicity of representations of Σi on F-

vector spaces, which is valid if i < char(F).

We will prove the following:

Theorem 3.5: Assume that char(F) > 2n. Then for every irreducible local

system E on X there exists a (cuspidal, irreducible on every connected com-

ponent) perverse sheaf SE ∈ P (Bunn), which is a GLn-Hecke eigensheaf with

respect to E.

Combined with Lemma 3.4 this proves the weak form of the geometric Lang-

lands conjecture, and hence Conjecture 1.3, assuming that char(F) > 2n.

In fact, by relying on some more unpublished work, one can strengthen this

result, and prove the following:

Theorem 3.6: Assume that char(F) 6= 2. Then for an absolutely irreducible

local system E on X there exists a (cuspidal, irreducible on every connected

component) perverse sheaf SE ∈ P (Bunn), which is a Hecke eigensheaf with

respect to E.
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We will sketch the proof of this theorem in Appendix A. Of course, Theorem

3.6 implies de Jong’s conjecture for any l 6= 2.

3.7. To prove Theorem 3.5 we will follow the strategy of [5]. Let Modd
n be the

stack of upper modifications of length d; note that Modd
n is a closed substack of

Hd
GLn

corresponding to the condition that the generic isomorphism of bundles

β:M→M′ is such that it extends to a regular map of coherent sheaves.

We set T d
E to be the perverse sheaf onHd

GLn
corresponding via the equivalence

of Theorem 2.6 to the following object of P d,GLn:

(E ⊗ V0)
(d)[d]

(cf. Sect. 5.3 below, where symmetric powers of local systems are discussed).

One easily shows that T d
E is indeed supported on Modd

n.

Let Cohd
0 be the stack classifying torsion sheaves of length d. There is a

natural smooth projection Modd
n → Cohd

0, and T d
E is isomorphic (up to a shift)

to the pull-back of a canonical perverse sheaf, denoted Ld
E on Cohd

0, called the

Laumon sheaf.

More explicitly, Ld
E is the Goresky–MacPherson extension of its own restric-

tion to the open substack
◦

Cohd
0, corresponding to regular semi-simple torsion

sheaves. This restriction is the pull-back of
◦

E(d) under the natural smooth

morphism
◦

Cohd
0 →

◦

X(d).

We will need the following statement, whose char = 0 version was proved

in [10]. For d = d1 + d2, let Fld1,d2

0 denote the stack classifying short exact

sequences 0→ J1 → J → J2 → 0, where J1 and J2 are torsion coherent sheaves

of lengths d1 and d2, respectively.

Let p denote the natural projection Fld1,d2

0 → Cohd
0, and let q be the projection

Fld1,d2

0 → Cohd1
0 ×Cohd2

0 .

Theorem 3.8: For any local system E we have:q! ◦ p∗(Ld
E) ≃ Ld1

E � Ld2

E .

3.9. Proof of Theorem 3.8. Consider first the open substack of

Cohd1
0 ×Cohd2

0 equal to q(p−1(
◦

Cohd
0)). Over it both maps q and p are iso-

morphisms and the isomorphism stated in the theorem is evident. Therefore,

we have to show that q! ◦ p∗(Ld
E) is a perverse sheaf, extended minimally from

the above open substack.

The question being local, we can assume that E is trivial. Let us decompose

E as a sum of 1-dimensional local systems E = E1 ⊕ · · · ⊕ En. For a partition
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d : d = d1 + · · · + dn, let Fld0 be the stack classifying flags of coherent torsion

sheaves with successive quotients having lengths given by d, and let pd be the

natural projection Fld0 → Cohd
0. Let qd denote the map Fld0 → Π

i
X(di) obtained

by taking supports of the successive quotients.

From Theorem 2.6 and Lemma 5.5, it follows that

Ld
E ≃

⊕

d

pd
! ◦ (qd)∗(E

(d1)
1 � · · ·�E(dn)

n ).

Note that each E
(di)
i is the constant sheaf on X(di), since E1 is one-dimensional

and trivial.

Thus, we have to computeq! ◦ p∗ ◦ pd
! ◦ (qd)∗(F

Fld0
).

Let Z denote the fiber product Fld0 ×
Cohd

0

Fld1,d2

0 . It can be naturally subdivided

into locally closed subvarieties (Schubert cells) numbered by the set

(Σd1 × Σd2)\Σd/(Σd1 × · · · × Σdn),

or, which is the same, of the ways to partition d1 = d1
1+· · ·+dn

1 , d2 = d1
2+· · ·+dn

2

with di
1 + di

2 = di. For each such pair of partitions, let us denote by Zd1,d2 the

corresponding subvariety in Z.

It is sufficient to show that the direct image of the constant sheaf on Zd1,d2

under

Zd1,d2 →֒ Z → Fld1,d2

0
q
→Cohd1

0 ×Cohd2
0

is a perverse sheaf, minimally extended from the open substack q(p−1(
◦

Cohd
0)).

The above map factors as

Zd1,d2 → Fld1
0 ×Fld1

0
pd1×pd2

−→ Cohd1
0 ×Cohd2

0 ,

where the first arrow is a generalized smooth fibration into affine spaces, of

relative dimension 0. Therefore, the resulting object of D(Cohd1
0 ×Cohd2

0 ) is

isomorphic to pd1

! (F
Fl

d1
0

)�pd2

! (F
Fl

d2
0

), and the latter is known (cf. Theorem 2.6)

to be a perverse sheaf, minimally extended from the required open locus.

3.10. Proceeding as in [5], we produce from T d
E the Whittaker sheaf, and

subsequently an object S′E ∈ D(Bun′n), where Bun′n is the stack classifying

pairs (M ∈ Bunn, κ : Ωn−1 →M).
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Let U ⊂ Bunn be the open substack, defined by the condition that M ∈ U

if Ext1(Ωn−1,M) = 0. Let U ′ be the preimage of U in Bun′n. Clearly, the

restriction of the projection π: Bun′n → Bunn to U is smooth.

We claim that the restriction of S′E to U ′ is perverse and irreducible on

every connected component. This follows as in [5], using Theorem 3.8 from

the vanishing result, Theorem 4.2, discussed below.

Having established Theorem 4.2, and hence perversity and irreducibility of

S′E , the next step is to show that S′E descends to a perverse sheaf on Bunn.

We do it by the same argument involving Euler–Poincaré characteristics as in

loc. cit. Namely, we have to show that the Euler–Poincaré characteristics of S′E
are constant along the fibers of the projection π.

As in [5], using Deligne’s theorem, we show that the Euler–Poincaré charac-

teristics of S′E are independent of the local system. Therefore, it suffices to show

that the Euler–Poincaré characteristics of S′E0
are constant along the fibers of

π, where E0 is the trivial n-dimensional local system. When we work with F′-

sheaves (where F′ is a local field of characteristic 0 with residue field Fl ), rather

than with F = Fl ((t))-sheaves, the corresponding fact follows from Sect. 6 of

[5]. Therefore, it suffices to show that the Euler–Poincaré characteristics of S′E0

at a given point of Bun′n are the same in the F′- and F-situations. We will show

this by comparing both sides with Fl -sheaves.

Thus, let F0 be any of the local fields (F or F′), and let O0 be the corre-

sponding local ring. By a subscript (F0, O0 or Fl ) we will indicate which of the

sheaf-theoretic contexts we are working in.

Consider the corresponding category P d,GLn

O0
. We can form the object

(E0 ⊗ V0)
(d)
O0
∈ P d,GLn

O0
, which under O0 → FO and O0 → Fl specializes to

(E0 ⊗ V0)
(d)
F0

and (E0 ⊗ V0)
(d)Fl

, respectively. From Sect. 5.3 it follows that

(E0 ⊗ V0)
(d)
O0

is O0-flat.

Using Theorem 2.6 for O0, from (E0 ⊗ V0)
(d)
O0

we produce the corresponding

O0-perverse sheaf on Modd
n, which is also O0-flat. Finally, we produce the

complex of O0-sheaves (S′E0
)O0 on Bun′n. By the above flatness property

(S′E0
)O0

L⊗

O0

Fl ≃ (S′E0
)Fl

and (S′E0
)O0

L⊗

O0

F0 ≃ (S′E0
)F0 ,

where (S′E0
)Fl

and (S′E0
)F0 are the corresponding complexes of Fl -sheaves and

F0-sheaves, respectively, on Bun′n.

Let KO0 (resp., KFl
, KF0) be the fiber of (S′E0

)O0 (resp., (S′E0
)Fl

, (S′E0
)F0)

at a given point of Bun′n. This is an object of the bounded derived cate-
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gory of finitely-generated O0-modules (resp., finite-dimensional Fl - or F0-vector

spaces), and we still have

KO0

L⊗

O0

Fl ≃ KFl
and KO0

L⊗

O0

F0 ≃ KF0 .

Under these circumstances we always have: χ(KF0) = χ(KFl
). Indeed, it suffices

to consider separately the cases when KO0 is a flat finitely-generated O0-module

(in which case the assertion is evident), or when KO0 is torsion. In the latter

case, we can assume that KO0 ≃ Fl . Then KF0 = 0, and KFl
has 1-dimensional

cohomologies in degrees −1 and 0, i.e., χ(KFl
) = 0.

This proves the fact that S′E descends to a perverse sheaf SE on Bunn. The

fact that SE satisfies the Hecke property follows from Theorem 3.8 as in [5],

Sect. 8. The cuspidality of SE also follows from the vanishing result, Theorem

4.2.

4. The vanishing result

4.1. To state Theorem 4.2 we have to recall the definition of the averaging

functor Avd
E : D(Bunn)→ D(Bunn). It is defined for d ∈ N and a local system

E of an arbitrary rank.

By definition,

Avd
E(S) =

→

h !(
←

h∗(S) ⊗ T d
E ).

In other words,

Avd
E(S) = (E ⊗ V0)

(d)[d] ⋆ S,

in the notation of Sect. 2.9.

The key step in the proof of perversity and irreducibility of S′E on U ′ is the

following:

Theorem 4.2: Let E be absolutely irreducible, of rank m with m > n, and d

be > (2g − 2) ·m · n. Then the functor Avd
E is identically equal to 0.

4.3. To prove Theorem 4.2 we will have to analyze separately the cases of

char(k) = 0 and k of positive characteristic. Let us show that the former case

reduces to the latter. (Of course, for de Jong’s conjecture we need the case

k = Fq.)

Indeed, if k is of characteristic 0, we can replace it by C and work with sheaves

in the analytic topology. In this case, we can consider sheaves with coefficients
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in an arbitrary field F of characteristic l. If F is finite, the local system E

is defined over a finitely generated sub-field of k, and the standard procedure

reduces us to the case of a finite ground.

The case of a general F reduces to that of Fl . Indeed, since the fundamental

group of a curve is finitely generated, we can assume that our local system

has coefficients in a ring A, finitely generated over Fl . Then the vanishing of

the functor Avd
E over A would follow from the corresponding assertion at all

geometric points of A, whose residue fields are finite.

4.4. Thus, for the rest of this section we will assume that the ground field k is

of positive characteristic of order prime to l. We need this assumption in order

to have the Artin–Schreier sheaf on the affine line, and the Fourier transform,

which is used in the definition of quotient categories D̃(Bunn), see below.

The proof of Theorem 4.2 will follow the same lines as the proof of the

analogous statement in the situation of char = 0 coefficients in [8]. We have:

Theorem 4.5: Under the assumptions of Theorem 4.2, the functor Avd
E is

exact in the sense of the perverse t-structure on D(Bunn).

We show as in [8], Appendix (or, alternatively, as in Sect. 2.1 of loc. cit., which

is slightly more cumbersome) that Theorem 4.5 implies Theorem 4.2. Thus, our

goal from now on is to prove Theorem 4.5.

The first step is to introduce a quotient triangulated category D̃(Bunn) of

D(Bunn), which has Properties 0, 1, 2 of [8], Sect. 2.12. The construction of

D̃(Bunn) and the verification of its properties given in Sect. 4–8 of loc. cit. goes

through without modification in our situation.

The next step is to prove an analog of Theorem 2.14 of loc. cit., which says

that the functor Av1
E is exact on the quotient category D̃(Bunn), provided that

E is absolutely irreducible of rank strictly greater than n. Again, the argument

presented in loc. cit. is applicable, since it only involves the action of symmetric

groups Σk with k ≤ 2n, and we have made the assumption char(F) > 2n.

The final step, which will require some substantial modifications in the case

of coefficients of positive characteristic, is the following:

Proposition 4.6: Let D̃(Bunn) be a triangulated quotient category of

D(Bunn), satisfying Properties 0 and 1 above.

(1) For any E, the functor Avd
E descends to a well-defined functor on D̃(Bunn).

(2) If E is such that the functor Av1
E is exact on D̃(Bunn), then so is Avd

E

for any d.



172 D. GAITSGORY Isr. J. Math.

Once Proposition 4.6 is proved, we finish the proof of Theorem 4.5 as in

Sect. 2.16 of [8].

4.7. Let D̃(Bunn×S) be the system of quotient categories of D(Bunn×S),

satisfying Properties 0 and 1. Recall the generalized Hecke functors H(·, ·) of

Sect. 2.9. We will prove the following:

Proposition 4.8: For any T ∈ PG
d

(Grd
G), the functor

D(Bunn)→ D(Bunn×X(d)): S 7→ H(T ,S)

descends to a well-defined exact functor D̃(Bunn)→ D̃(Bunn×X(d)).

Clearly, Proposition 4.8 implies Proposition 4.6(1). In addition, we have the

following corollary:

Corollary 4.9: Let T be an object of PG
d

(Grd
G) supported over a subvariety

of dimension ≤ i of X(d). Then the functor S 7→ T ⋆ S has the cohomological

amplitude at most [−i, i] on D̃(Bunn).

The rest of this subsection is devoted to the proof of Proposition 4.8.

Lemma 4.10: The functor

H(V, ·): D(Bunn)→ D(Bunn×X)

(cf. Sect. 2.7) descends to a well-defined exact functor D̃(Bunn)→ D̃(Bunn×X)

for any V ∈ Rep(ǦF).

Proof: First, we claim that this is true for V = Λi(V0). This follows from the

Springer correspondence (applicable here, since char(F) > n) as in Prop. 1.11

of [8]. The fact that H(V, ·) is well-defined for any V follows now, since the

classes of the representations of the form Λi(V0) generate the Grothendieck ring

of Rep(ǦF).

To prove the exactness assertion, it is enough to assume that V is irreducible.

We will proceed by induction on the length of the highest weight of V . Since

the statement is essentially Verdier self-dual, it is enough to prove that the

functor H(V, ·): D̃(Bunn) → D̃(Bunn×X) is right-exact. However, for any

such V , there exists a representation V ′ isomorphic to a tensor product of

representations of the form Λi(V0), together with a surjection V ′ � V , such

that its kernel, V ′′, is an extension of irreducible representations with smaller

highest weights.
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For S ∈ P̃ (Bunn) we have a long exact cohomology sequence

· · · → hi(H(V ′′,S))→ hi(H(V ′,S))→ hi(H(V,S))→ hi+1(H(V ′′,S))→ · · ·

and by the induction hypothesis, we conclude that H(V, ·) is right exact.

Consider the diagonal stratification of X(d) numbered by the partitions d :

d = d1 + · · ·+ dk. For each such partition consider the space

Xd := (X × · · · ×X︸ ︷︷ ︸
k times

)disj ,

which covers in a finite andétale way the corresponding stratum in X(d).

Let us denote by GrG,d the fiber product Xd ×
X(d)

Grd
G. Note that GrG,d is

isomorphic to

GrG,X × · · · ×GrG,X︸ ︷︷ ︸
k times

×
Xk

Xd.

We can consider the group scheme Gd := G×k|X
d
, the category PGd(GrG,d) of

Gd-equivariant perverse sheaves on GrG,d, and the corresponding Hecke functor

H(·, ·): PGd(GrG,d)×D(Bunn)→ D(Bunn×Xd).

To prove the proposition, it is enough to show that the latter functor descends

to a well-defined exact functor PGd(GrG,d)× D̃(Bunn)→ D̃(Bunn×Xd).

Note that every irreducible object of PGd(GrG,d) has the form

(TV1,X � · · ·� TVk,X |X
d
)⊗K,

where K is an irreducible perverse sheaf on Xd, and V1, . . . , Vk are irreducible

objects of Rep(ǦF) (the notation TV,X is as in Sect. 2.7).

For such an object of PG
d

(Grd
G) the above functor H(·, ·) takes the form

S 7→ H(V1 � · · ·� Vk,S)|X
d
⊗K.

From Lemma 4.10 we obtain that this functor indeed descends to D̃(Bunn).

The exactness statement also follows from Lemma 4.10, since any object of the

form

H(V1 � · · ·� Vk,S) ∈ D(Bunn×Xk)

is ULA with respect to the projection Bunn×Xk → Xk, cf. Lemma 3.7 of [8].
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4.11. Now we are ready to prove Proposition 4.6(2). For that we need one

more piece of preparatory material, namely, the notion of external exterior power

of a local system. This notion is discussed in Sect. 5.6. Thus, for any integer d

we have a perverse sheaf Λ!,(d)(E ⊗ V0) on X(d). Moreover, by Theorem 5.7(2),

Λ!,(d)(E ⊗ V0) is naturally an object of P d,GLn.

According to Proposition 4.8, we have a well-defined functor

⋆: P d,GLn × D̃(Bunn)→ D̃(Bunn),

and we must prove the exactness of (E ⊗ V0)
(d)⋆.

Assume that S belongs to P̃ (Bunn). We will prove by induction that

(E ⊗ V0)
(d) ⋆ S also belongs to P̃ (Bunn). Thus, we assume that the state-

ment holds for d′ < d. Since the situation is essentially Verdier self-dual, it is

enough to show that (E ⊗ V0)
(d) ⋆ S ∈ D̃≤0(Bunn).

Consider the complex

Λ!,(d)(E ⊗ V0)→ Λ!,(d−1)(E ⊗ V0) ⋆ (E ⊗ V0)→ · · · →

Λ!,(i)(E ⊗ V0) ⋆ (E ⊗ V0)
(d−i) → Λ!,(i−1)(E ⊗ V0) ⋆ (E ⊗ V0)

(d−i+1) → · · · →

(E ⊗ V0) ⋆ (E ⊗ V0)
(d−1) → (E ⊗ V0)

(d)

of objects of P d,GLn , given by Theorem 5.7. Since this complex is exact, it is

enough to show that each

(Λ!,(i)(E ⊗ V0) ⋆ (E ⊗ V0)
(d−i)) ⋆ S

belongs to D̃≤i−1(Bunn) for i = 1, . . . , d.

By the induction hypothesis, we know that (E ⊗ V0)
(d−i) ⋆ S ∈ D̃≤0(Bunn).

Therefore, it suffices to show that the functor

S 7→ Λ!,(i)(E ⊗ V0) ⋆ S

sends D̃≤0(Bunn) to D̃≤i−1(Bunn)

Note that by Corollary 4.9, for S ∈ D̃≤0(Bunn), the object Λ!,(i)(E ⊗ V0) ⋆ S

does belong to D̃≤i(Bunn), since X(i) is i-dimensional. Therefore, it suffices to

show that the top cohomology hi(Λ!,(i)(E ⊗ V0) ⋆ S) vanishes.

Consider the object j!∗(
◦

Λ!,(i)(E⊗V0))[i] ∈ P i,GLn . We have an injective map

j!∗(
◦

Λ!,(i)(E ⊗ V0)[i]) →֒ Λ!,(i)(E ⊗ V0),

and the cokernel is an object of P i,GLn supported on a subvariety of dimension

≤ i. Therefore, by Corollary 4.9 and the long exact sequence, it suffices to show

that

h0(j!∗(
◦

Λ!,(i)(E ⊗ V0)[i]) ⋆ S) = 0
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for S ∈ D̃≤0(Bunn). We have a surjection of perverse sheaves on
◦

X(i)

j∗((symi)!((E ⊗ V0)
�i))[i]→

◦

Λ!,(i)(E ⊗ V0)[i],

and hence also a surjection

(symi)!((E ⊗ V0)
�i)[i]� j!∗(

◦

Λ!,(i)(E ⊗ V0)[i])

of objects of P i,GLn . Again, by Corollary 4.9 and the long exact sequence, it

suffices to show that

h0((symi)!((E ⊗ V0)
�i)[i] ⋆ S) = 0

for S ∈ D̃≤0(Bunn). However,

(symi)!((E ⊗ V0)
�i)[i] ⋆ S = Ãv

1

E ◦ · · · ◦ Ãv
1

E︸ ︷︷ ︸
i times

(S)[i].

By the assumption, the functor Ãv
1

E is exact. Hence, the above expression has

zero cohomologies in all the degrees > −i and, in particular, in degree 0, if

S ∈ D̃≤0(Bunn).

5. Symmetric and exterior powers of local systems

In this section we will work with F-vector spaces, and F-local systems on X .

However, the same results extend to flat O-modules and local systems.

5.1. Let V be a vector space over F. Let us denote by Sym!,2(V ) the subspace

of V ⊗2 consisting of flip-invariant vectors. Note that Sym!,2(V ) is spanned by

vectors of the form v⊗v, v ∈ V . Let Sym!,d(V ) be the subspace of V ⊗d consisting

of invariants of the symmetric group Σd. Of course, for d = 1, Sym!,1(V ) = V

and for d ≥ 2,

Sym!,d(V ) =
⋂

1≤i≤d−1

V ⊗i−1 ⊗ Sym!,2(V )⊗ V ⊗d−1−i,

since Σd is generated by the simple reflections.

Let Λ!,2(V ) be the subspace of V ⊗2 spanned by vectors of the form

v ⊗ w − w ⊗ v, v, w ∈ V . For d ≥ 2, let Λ!,d(V ) be the subspace of V ⊗d

equal to the intersection

⋂

1≤i≤d−1

V ⊗i−1 ⊗ Λ!,2(V )⊗ V ⊗d−1−i.
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Note that when char(F) 6= 2, we can define Λ!,2(V ) as the subspace of σ-

anti-invariants in V ⊗2, where σ is the transposition; hence in this case Λ!,d(V )

coincides with the subspace of Σd-anti-invariants in V ⊗d.

Let Sym∗,d(V ) be the quotient space of V ⊗d by the sum of subspaces of the

form V ⊗i−1 ⊗ Λ!,2(V )⊗ V ⊗d−1−i for 1 ≤ i ≤ d− 1. In other words, Sym∗,d(V )

is the space of Σd-coinvariants in V ⊗d.

Let Λ∗,d(V ) be the quotient of V ⊗d by the sum of subspaces of the form

V ⊗i−1 ⊗ Sym!,2(V )⊗ V ⊗d−1−i for 1 ≤ i ≤ d− 1.

Note that as representations of GL(V )F, Λ∗,d(V ) and Λ!,d(V ) are irreducible

and isomorphic to one another (but, of course, the isomorphism is not given by

the map Λ!,d(V ) → V ⊗d → Λ∗,d(V ), as the latter is zero if char(F) divides d).

The isomorphism in question is induced by the endomorphism of V ⊗d given by

Σσ∈Σd
sign(σ) · σ. We will sometimes use the notation Λi(V ) to denote either

of the above vector spaces.

By definition, Λ1(V ) = V and Λ0(V ) = Sym∗,0(V ) = Sym!,0(V ) = F. If

d > dim(V ) one easily shows that Λd(V ) = 0.

Lemma 5.2: We have:

(1) If V is finite-dimensional, there are canonical isomorphisms

Sym∗,d(V ∗) ≃ (Sym!,d(V ))∗ and Λ∗,d(V ∗) ≃ (Λ!,d(V ))∗,

where ∗ denotes the dual vector space.

(2) If V ≃ V1 ⊕ V2, there are canonical isomorphisms

Sym∗,d(V ) ≃
⊕

d1+d2=d

Sym∗,d1(V1)⊗ Sym∗,d2(V2)

and

Λ∗,d(V ) ≃
⊕

d1+d2=d

Λ∗,d1(V1)⊗ Λ∗,d2(V2),

and similarly for the !-versions.

(3) The natural maps Λ!,d(V ) → Λ!,d−1(V ) ⊗ V and Sym∗,d−1(V ) ⊗ V →

Sym∗,d(V ) give rise to the long exact sequence (called the Koszul complex)

Λ!,d(V )→ Λ!,d−1(V )⊗ V → · · · → Λ!,i(V )⊗ Sym∗,d−i(V )→

Λ!,i−1(V )⊗ Sym∗,d−i+1(V )→ · · · → V ⊗ Sym∗,d−1(V )→ Sym∗,d(V ),

and the maps Sym!,d(V )→ Sym!,d−1(V )⊗V and Λ∗,d−1(V )⊗V → Λ∗,d(V )

give rise to the long exact sequence

Sym!,d(V )→ Sym!,d−1(V )⊗ V → · · · → Sym!,i(V )⊗ Λ∗,d−i(V )→

Sym!,i−1(V )⊗ Λ∗,d−i+1(V )→ · · · → V ⊗ Λ∗,d−1(V )→ Λ∗,d(V ).
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Moreover, the above long exact sequences transform to one another under

duality, if V is finite-dimensional.

Points (1) and (2) of this lemma are straightforward. For the proof of (3), we

reduce the assertion to the case of dim(V ) = 1 using (2).

5.3. Let now X be a smooth curve, let X(d) denote its d-th symmetric power,

i.e., X(d) = Xd/Σd, and let symd denote the projection Xd → X(d). It is

well-known that X(d) is smooth and, in particular, the map symd is flat.

Let E be a local system on X ; we are going to recall the construction of its d-th

external symmetric power. Recall that sumd1,d2 denotes the addition morphism

X(d1)×X(d2) → X(d). For S1 ∈ D(X(d1)), S2 ∈ D(X(d2)), let S1 ⋆S2 ∈ D(X(d))

denote the object (sumd1,d2)!(S1 � S2).

Let E�d ∈ D(Xd) denote the external power of E; this sheaf is naturally

Σd-equivariant. Consider

E ⋆ · · · ⋆ E ⋆ · · · ⋆ E ≃ (symd)!(E
�d) ∈ D(X(d)).

Since the map symd is Σd-invariant, this sheaf is Σd-equivariant.

Recall that if Σ is a finite group (acting trivially on a variety Y), we have the

derived functor of invariants

R InvΣ : D+(Y)Σ → D+(Y)..

By applying this functor to (symd)!(E
�d) we obtain an object

R InvΣd
((symd)!(E

�d)) ∈ D+(X(d)).

Finally, we set E(d) to be the 0-th cohomology in the usual t-structure of

the complex R InvΣd
((symd)!(E

�d)). In other words, E(d) is obtained from

(symd)!(E
�d) by taking non-derived Σd-invariants in the abelian category of

sheaves.

Since the functor of stalks is exact on the category of sheaves, we obtain that

for a point ıD: pt→ X(d), where D = Σdi · xi is an effective divisor of degree d

with the xi’s pairwise distinct,

ı∗D(E(d)) ≃
⊗

i

Sym!,di(Exi
),

where Exi
denotes the stalk of E at xi.

For two positive integers d1, d2 recall the subset

(X(d1) ×X(d2))disj ⊂ X(d1) ×X(d2).
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We have:

(5) sum∗d1,d2
(E(d))|(X(d1)×X(d2))disj

≃ (E
(d1)
1 �E

(d2)
2 )|(X(d1)×X(d2))disj

.

Let j:
◦

X(d) → X(d) denote the embedding of the complement to the diagonal

divisor. It is easy to see that
◦

E(d) := E(d)| ◦
X(d)

is a local system.

Proposition 5.4: The complex E(d)[d] is a perverse sheaf; moreover,

E(d)[d] ≃ j!∗(
◦

E(d)[d]).

Note that the proposition implies that the construction of E(d) is essentially

Verdier self-dual, i.e., D (E(d) [d]) ≃ (E∗)(d)[d], where E∗ is the dual local system.

This is so, because the isomorphism obviously holds over
◦

X(d), from which both

sides are extended minimally. In particular, we have a canonical projection

(symd)!(E
�d)→ E(d).

The above fact about self-duality implies the following description of the co-

stalks of E(d): For D = Σdi · xi as above,

ı!D(E(d)) ≃
⊗

i

Sym∗,di(Exi
)[−2d].

Note also that from the proposition it follows that E(d)[d] embeds into the

perverse sheaf h0
perv(R InvΣd

((symd)!(E
�d))[d]), where h0

perv denotes the functor

of taking the 0-th cohomology in the perverse t-structure. However, this map

is not in general an isomorphism.

Indeed, let F be of characteristic 2, take d = 2 and E to be the trivial 1-

dimensional local system. Then, (sym2)!(E
�2) ≃ (symd)!(FX2), and we have a

canonical embedding FX(2) → (symd)!(FX2), whose cone is j!(F ◦
X(2)

). By dual-

ity, we have an embedding of perverse sheaves j∗(F ◦
X(2)

)[2]→ (symd)!(FX2)[2],

and it is easy to see that j∗(F ◦
X(2)

)[2] identifies with the subobject of Σ2-

invariants in (symd)!(FX2)[2].

To prove Proposition 5.4 we will need the following lemma, which follows

from Lemma 5.2:

Lemma 5.5: For E = E1 ⊕ E2 we have a canonical isomorphism:

E(d) ≃
⊕

d1+d2=d

E
(d1)
1 ⋆ E

(d2)
2 .

Proof of Proposition 5.4: The question being étale-local, we can assume that

the local system E is trivial. Hence we can decompose E = E1 ⊕ · · · ⊕ Em,
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where the Ei’s are 1-dimensional. By Lemma 5.5, we have:

E(d) ≃
⊕

d

E
(d1)
1 ⋆ · · · ⋆ E(dm)

m ,

where d = (d1, . . . , dm) runs over the set of m-tuples of non-negative integers

with Σidi = d.

It is easy to see that for the trivial 1-dimensional local system its d-th sym-

metric power is the trivial 1-dimensional local system on X(d). This implies that

assertion of the proposition, since for each d, the map X(d1)×· · ·×X(dm) → X(d)

is finite.

5.6. We will now construct another complex of sheaves, denoted Λ!,(d)(E), on

X(d), called the external exterior power of E.

Theorem 5.7: For every d ≥ 1 there exists a canonically defined complex

Λ!,(d)(E) ∈ D(X(d)) endowed with a map αd: Λ!,(d)(E)→ Λ!,(d−1)(E) ⋆ E, such

that:

(1) The restriction
◦

Λ!,(d)(E) := j∗(Λ!,(d)(E)) is a local system and

◦

Λ!,(d)(E) ≃ R InvΣd
(j∗((symd)!(E

�d))⊗ sign).

(2) For d1+d2 = d the restriction of sum∗d1,d2
(Λ!,(d)(E)) to (X(d1)×X(d2))disj

is canonically isomorphic to the restriction to this open subset of

Λ!,(d1)(E)� Λ!,(d2)(E).

(3) Λ!,(d)(E)[d] is perverse.

(4) The composition

Λ!,(d)(E)
αd−→Λ!,(d−1)(E) ⋆ E

αd−1
−→Λ!,(d−2)(E) ⋆ E ⋆ E → Λ!,(d−2)(E) ⋆ E(2)

is zero and the resulting complex of perverse sheaves

Λ!,(d)(E)[d]→ Λ!,(d−1)(E) ⋆ E[d]→ · · · → Λ!,(i)(E) ⋆ E(d−i)[d]→

Λ!,(i−1)(E) ⋆ E(d−i+1)[d]→ · · · → E ⋆ E(d−1)[d]→ E(d)[d]

is exact.

(5) For a divisor D = Σdi · xi with the xi’s pairwise distinct, the co-stalk

ı!D(Λ!,(d)(E)) is (quasi-) isomorphic to
⊗

i Λ!,di(Exi
)[−2d], so that the co-

stalk of the complex of point (4) identifies with the product over i of the

Koszul complexes of Lemma 5.2(3).

Note that the construction of Λ!,(d)(E) is not Verdier self-dual. Set

Λ∗,(d)(E) := D (Λ!,(d)(E∗))[−2d].
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Then Λ∗,(d)(E) would satisfy the same properties (1), (2) and (3) of Theorem

5.7 as Λ!,(d)(E). Instead of point (4) we will have an exact complex

E(d)[d]→ E(d−1) ⋆ E[d]→ · · · → E(i) ⋆ Λ∗,(d−i)(E)[d]→

E(i−1) ⋆ Λ∗,(d−i+1)(E)[d]→ · · · → E ⋆ Λ∗,(d−1)(E)[d]→ Λ∗,(d)(E)[d].

Instead of point (5), we would be able to describe the stalks of Λ∗,(d)(E):

ı∗D(Λ∗,(d)(E)) ≃
⊗

i

Λ∗,di(Exi
).

Observe also that when char(F) = 0, both Λ!,(d)(E) and Λ∗,(d)(E) are iso-

morphic to the minimal extension j!∗(
◦

Λ!,(d)(E)).

5.8. Proof of Theorem 5.7. We proceed by induction on d. Evidently, for

d = 1 we can take Λ!,(d)(E) = E ∈ D(X). Thus, we can assume that Λ!,(i)(E)

satisfying conditions (1)–(5) of Theorem 5.7 have been constructed for i < d.

Define Λ!,(d)(E) ∈ D(X(d))[d] to be represented by the complex of perverse

sheaves

K(d, E) := Λ!,(d−1)(E) ⋆ E[d]→ · · · → Λ!,(i)(E) ⋆ E(d−i)[d]

→ · · · → E ⋆ E(d−1)[d]→ E(d)[d].

(Here we are using the fact that the category of complexes of perverse sheaves

maps to D(X(d)); in fact, due to a theorem of Beilinson, the corresponding func-

tor from the derived category of perverse sheaves to D(X(d)) is an equivalence.)

It is easy to see that Λ!,(d)(E) satisfies conditions (1) and (2). Let us show

that Λ!,(d)(E)[d] is a perverse sheaf. Since the question is étale-local, we can

assume that E is the trivial local system; and let us write E = E1 ⊕ · · · ⊕ Em,

where the Ei’s are trivial 1-dimensional.

Lemma 5.9: For E = E1 ⊕ E2 we have a canonical isomorphism:

Λ!,(d)(E) ≃
⊕

d1+d2=d

Λ!,(d1)(E1) ⋆ Λ!,(d2)(E2).

Proof: Assume the validity of the lemma for d′ < d. Then, by the induction

hypothesis and Lemma 5.5, we obtain an isomorphism of complexes of perverse

sheaves:

K(d, E) ≃
⊕

d1+d2=d

K(d1, E1) ⋆K(d2, E2).

This implies our assertion.
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Thus, by decomposing E as a direct sum E = E1 ⊕ · · · ⊕ Em with the Ei’s

being 1-dimensional, we reduce the perversity assertion to the case when E is

itself 1-dimensional. In the latter case we claim that

Λ!,(d)(E) ≃ j∗(
◦

Λ!,(d)(E)).

Indeed, by point (5) and the induction hypothesis, the co-stalk of Λ!,(d)(E) at

D = Σdi · xi is quasi-isomorphic to

⊗

i

Λ!,di(Exi
)[−2d].

Therefore, if one of the di’s is > 1, then the corresponding Λ!,di(Exi
) = 0,

and the above expression vanishes. Moreover, this shows that the constructed

complex Λ!,(d)(E) satisfies condition (5) of the theorem.

Hence, the perversity assertion follows from the fact that the embedding

j:
◦

X(d) → X(d) is affine.

Note that the last point of the proof shows Λ!,(d)(E) is not a sheaf in the

usual t-structure (cf. example preceding the proof of Proposition 5.4). However,

the object Λ∗,(d)(E) is always a sheaf.

6. Appendix A: Proof of Theorem 3.6

6.1. The assertion of Theorem 3.6 divides into two parts. First, we will

show that Theorem 3.5 remains valid under the assumption that char(F) 6= 2.

Secondly, we will prove a particular case of Conjecture 3.3 under the assumption

that SE is a cuspidal perverse sheaf.

The ingredient in the proof of Theorem 3.5 that relied on the assumption that

char(F) > 2n was the proof of Theorem 4.2. The latter used this assumption

in the following two places:

1) Proof of the fact that if E is irreducible of rank > n, then the functor Av1
E

is exact on D̃(Bunn).

2) Proof of Lemma 4.10.

Let us first treat point 2). Let us call a representation V ∈ Rep(ǦF) positive

if the action of the group GLn on it extends to an action of the semi-group

Matn,n. Every positive V can be decomposed into a direct sum of Vd, d ≥ 0,

according to the action of the center. Equivalently, V is positive of degree d if

it can be realized as a quotient of (several copies of) V ⊗d
0 .

Let Gr+GLn,x ⊂ GrG,x be the “positive” part of the affine Grassmannian,

corresponding to the condition that the modification of vector bundles
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β: M → M0 is such that M0 → M is a regular map of coherent sheaves.

One can show that V is positive if and only if the corresponding perverse sheaf

on GrG,x is supported on Gr+GLn,x.

Clearly, if V is any finite-dimensional representation of GLn, by multiplying

it by a sufficiently high power of the determinant, we can make it positive.

Therefore, to prove Lemma 4.10 it suffices to show that the functor H(V, ·)

is well-defined and exact on D̃(Bunn) for V positive. However, the proof of the

latter fact can be obtained by the same argument as the proof of this statement

for V = V0 in [8], Sect. 7.

6.2. Let us now treat point 1) above. The assumption on char(F) was used

in the proof of Theorem 2.14 of [8] in the following situation:

Recall that if Σ is a finite group, we have the abelian category P̃Σ(Bunn×X),

which is a Serre quotient of the category of Σ-equivariant perverse sheaves on

Bunn×X , with the group Σ acting trivially.

We will take Σ = Σi, and consider the functor

S 7→ (S ⊗ sign)Σi

of Σi-anti-coinvariants.

This functor is right-exact on PΣi(Bunn×X), and hence also on

P̃Σ(Bunn×X), and we need to replace by it the (exact, because of the

assumption on the characteristic) functor S 7→ HomΣi
(sign,S) considered in

Sect. 3 of [8].

To make the argument work, we need to insure that an analog of Propo-

sition 1.11 of [8] holds in our situation. Namely, let us consider the functor

P̃ (Bunn×S)→ P̃Σi(Bunn×X × S) given by

S 7→ H�i
S (S)|Bunn ×∆(X)×S[1− i].

This functor maps to the abelian category because of Property 1 of D̃(Bunn)

and the ULA assertion (cf. Lemma 3.7 of [8]). We have:

Proposition 6.3: If char(F) 6= 2, then the right-exact functor

S 7→ ((H�i
S (S)|Bunn×∆(X)×S [1− i])⊗ sign)Σi

mapping P̃ (Bunn×S) to P̃ (Bunn×X × S) is 0 if i > n, and is isomorphic to

S 7→ m∗(S)[1] if i = n.

Proof: Using Lemma 4.10, the functor considered in the proposition is isomor-

phic to

S 7→ H((V0 ⊗ sign)⊗i
Σi

,S).
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Hence, the assertion follows the fact that if char(F) 6= 2, then (V0 ⊗ sign)⊗i
Σi

≃ Λi(V0).

6.4. Finally, let us show that if SE is a cuspidal perverse sheaf, which has a

GLn-Hecke property with respect to a local system E, then, in fact, it satisfies

the full Hecke property.

First, note that it suffices to construct the functorial isomorphisms α(V ) of

(4), and verify their properties, for representations V , which are positive.

We begin with the following observation:

Lemma 6.5: For any V ∈ Rep(ǦF), and S ∈ D(Bunn), which is cuspidal and

perverse, the object H(V,S) is a perverse sheaf.

Proof: Since the assertion is essentially Verdier self-dual, it suffices to show

that H(V,S) belongs to D≤0(Bunn×X).

Suppose the contrary, and consider the truncation map

(6) H(V,S)→ τ>0(H(V,S)).

By Lemma 4.10, H(V,S) is exact on D̃(Bunn×X). By assumption, S is cuspi-

dal, which implies that H(V,S) is also cuspidal.

Property 2 of D̃(Bunn×X) (cf. [8], Sect. 2.12) implies that the truncation

map (6) is 0, which is a contradiction.

Let V ∗0 denote the vector space underlying the corresponding representation

of ǦF = GLn. Consider the object

H((V ⊗ V ∗0 )� · · ·� (V ⊗ V ∗0 ),SE) ∈ D(Bunn×Xd).

It is Σd-equivariant, and by assumption, it is isomorphic to the perverse sheaf

SE � ((E ⊗ V ∗0 [1])� · · ·� (V ⊗ V ∗0 [1])).

By restricting both sides to the diagonal Bunn×X ⊂ Bunn×Xd, we obtain

a Σd-equivariant isomorphism

(7) H((V ⊗ V ∗0 )⊗d,SE) ≃ SE � (E ⊗ V ∗0 )⊗d[1].

Moreover, both sides of (7) are acted on by the group GL(V0) of automorphisms

of the vector space V0, and the isomorphism of (7) is compatible with these

actions.
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Let us take Σd-coinvariants of both sides of (7). By Lemma 6.5, we obtain a

GL(V0)-equivariant isomorphism of perverse sheaves:

(8) H(Sym∗,d(V ⊗ V ∗0 ),SE) ≃ SE � Sym∗,d(E ⊗ V ∗0 )[1].

Let now V ∈ Rep(ǦF) be a positive representation of degree d. Let V

denote the underlining vector space, which we may regard as a representation

of GL(V0). Note that we have an isomorphism of ǦF-representations

(Sym∗,d(V ⊗ V ∗0 )⊗ V )GL(V0) ≃ V.

Let us tensor both sides of (8) by V and take GL(V0)-invariant parts. By Lemma

6.5, we obtain:

H(V,SE) ≃ SE � (Sym∗,d(E ⊗ V ∗0 )⊗ V )GL(V0)[1] ≃ SE �EV [1],

where EV is the local system corresponding to E and the ǦF-representation V .

Thus, we have constructed a functorial isomorphism α(V ) for V positive of

a fixed degree. To check the commutativity of the diagrams 1) and 2) it is

sufficient to do this when V1 ≃ (V ⊗ V ∗0 )d1 and V2 ≃ (V ⊗ V ∗0 )d2 . In this case,

the required commutativity follows by construction.

7. Appendix B: Proof of Theorem 2.6

In this section we will show how to deduce Theorem 2.6 from Theorem 2.2. We

will work with sheaves over any ring of coefficients (e.g., F or O) and we will

regard the Langlands dual group Ǧ as a group-scheme over this ring. We shall

denote by Rep(Ǧ) the category of algebraic representations of Ǧ.

7.1. We shall first consider the case d = 1. By [11], Proposition 2.2, to any

object V ∈ Rep(Ǧ) we can attach a spherical perverse sheaf TV on GrG,X . Let

R be the algebra of functions on G, viewed as an ind-object of Rep(Ǧ) via the

left action of Ǧ on itself. Let us denote by RX the corresponding ind-object of

PG(GrG,X). The right action of Ǧ on itself endows RX with a Ǧ-action.

We define the functor F: P Ǧ,1 → Ind(PG(GrG,X)) by the formula

K 7→ (s∗(K) ⊗RX [1])Ǧ,

where the superscript Ǧ designates Ǧ-invariants. We shall denote by the same

symbol the extension of this functor onto Ind(P Ǧ,1).

Let 1GrG,X
denote the natural section X 7→ GrG,X . We define the functor

G: PG(GrG,X)→ Ind(P Ǧ,1) by

T 7→ h0(1!
GrG,X

(RX ⋆ T )),
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where ⋆ is the convolution functor on PG(GrG,X), and h0(·) designates the 0-th

perverse cohomology. We will denote by the same symbol the extension of G

onto Ind(PG(GrG,X)).

Proposition 7.2: The functors F and G map P Ǧ,1 to PG(GrG,X) and

PG(GrG,X) to P Ǧ,1, respectively, and define mutually inverse equivalences of

categories.

The rest of this subsection is devoted to the proof of this proposition.

Let us consider the composition G ◦ F: P Ǧ,1 → Ind(P Ǧ,1). Since the functor

of convolution is exact, for K ∈ P Ǧ,1 we have:

RX ⋆ (s∗(K) ⊗RX [1])Ǧ ≃ (s∗(K)[1]⊗ (RX ⋆RX))Ǧ,

where Ǧ acts on RX ⋆RX via the second multiple.

However, RX ⋆ RX ≃ RX ⊗ R, with the diagonal action of Ǧ. Hence, we

must calculate

(9) h0(1!
GrG,X

(s∗(K ⊗R)[1]⊗RX)).

Lemma 7.3: For any K′ ∈ Ind(P Ǧ,1) we have a canonical isomorphism

K′ ≃ h0(1!
GrG,X

(s∗(K′)[1]⊗RX)).

Proof: The embedding of the trivial representation into R gives rise to a map

(10) 1GrG,X ∗(ConstX [1])→RX ,

where ConstX denotes the constant sheaf on X . Hence, for any K′ as above, we

have a map

K′ → 1!
GrG,X

(s∗(K′)[1]⊗RX),

and we must show that the LHS identifies with the maximal sub-object of the

RHS, supported on the image of 1GrG,X
.

Let us first assume that K′ is lisse. Then s∗(K′)⊗RX ∈ Ind(PG(GrG,X)) is

ULA with respect to the projection s: GrG,X → X . Therefore, to prove our

assertion, it would be sufficient to show that for some (or any) point x ∈ X ,

(11) K′x → h0(1!
GrG,x

(K′x ⊗R))

is an isomorphism, where K′x denotes the fiber of K′ at x, and 1!
GrG,x

is the

embedding of the unit point into GrG,x. However, the latter assertion follows

from the equivalence Rep(G) ≃ PG(Ox)(GrG,x).
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Let now K′ be arbitrary. We can write

(12) K′1 → K
′ → j∗j

∗(K′)→ K′2,

where j is the embedding of an open subset X ′ →֒ X , and K′1,K
′
2 are perverse

sheaves supported on X −X ′. By choosing X ′ to be sufficiently small, we can

arrange that the restriction of K′ to X ′ be lisse.

Since the functor h0(1!
GrG,x

(·)) is left exact, it is sufficient to show that the

map in the lemma is an isomorphism for K′1, K
′
2 and j∗j

∗(K′). The assertion

concerning K′1 and K′2 is an immediate corollary of the equivalence Rep(Ǧ) ≃

PG(Ox)(GrG,x). In addition, we have:

1!
GrG,X

(s∗(j∗j
∗(K′))⊗RX) ≃ j∗j

∗(1!
GrG,X

(s∗(K′)⊗RX)),

and our assertion follows from the lisse case, considered above.

Using the lemma, we obtain

G ◦ F(K) ≃ (K ⊗R)Ǧ ≃ K,

as required. Let us now consider the composition

F ◦ G: PG(GrG,X)→ Ind(PG(GrG,X)).

Lemma 7.4: For T ∈ PG(GrG,X) there exists a canonical isomorphism

s∗(h0(1!
GrG,X

(RX ⋆ T ))[1])⊗RX ≃ RX ⋆ T .

Proof: Let us rewrite the LHS of the expression in the lemma as

(13) RX ⋆ 1GrG,X ∗(h
0(1!

GrG,X
(RX ⋆ T ))).

The natural map

1GrG,X ∗(h
0(1!

GrG,X
(RX ⋆ T )))→RX ⋆ T

gives rise to a map from the expression in (13) to

RX ⋆ (RX ⋆ T ) ≃ (RX ⋆RX) ⋆ T .

The multiplication on R give rise to a map RX ⋆RX → RX . Hence, by com-

posing, we obtain a map

RX ⋆ 1GrG,X ∗(h
0(1!

GrG,X
(RX ⋆ T )))→ RX ⋆ T .
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To show that the latter map is an isomorphism, we proceed as in the proof of

Lemma 7.3, by reducing the assertion to the case when T is ULA with respect

to s: GrG,X → X .

Thus,

F ◦ G(T ) ≃ (RX ⋆ T )Ǧ,

where Ǧ acts on the convolution via its action on RX . The map (10) gives rise

to a map

T → (RX ⋆ T )Ǧ,

and repeating the argument used in the proofs of Lemmas 7.3 and 7.4, we show

that the latter map is an isomorphism.

Thus, we obtain that the functors F and G induce mutually inverse equiva-

lences of categories of Ind(PG(GrG,X)) and Ind(P Ǧ,1). In particular, F sends

P Ǧ,1 to PG(GrG,X) and G sends PG(GrG,X) to P Ǧ,1, and the resulting functors

P Ǧ,1 � PG(GrG,X) are also mutually inverse.

7.5. To treat the case of an arbitrary d, we will have to construct an ob-

ject fR(d) in PG
d

(Grd
G), which will play a role similar to that of RX . This

construction is essentially borrowed from [2], Sect. 3.4.

First, let us recall the following construction from [11], Sect. 5. Let ∆ denote

the embedding of the diagonal X → X × X and j be the embedding of the

complement. Then given two objects V, W ∈ Rep(Ǧ) there exists a canonical

map

j∗j
∗(TV � TW )→ ∆∗(TV⊗W ).

Applying this to V = W = R, and composing with the map TR⊗R → TR,

corresponding to the algebra structure on R, we obtain a map

(14) j∗j
∗(RX �RX)→ ∆∗(RX).

For a positive integer d, let us denote by Jd the finite set {1, . . . , d}, and for

a surjection of finite sets Jd � I, let ∆I be the embedding of the corresponding

diagonal XI →֒ Xd = XJd

. Let
o

∆I be the locally closed embedding of the open

subset
o

XI →֒ XJd

, obtained by removing from XI its diagonal divisor. Let us

denote by GrI
G the corresponding version of the affine Grassmannian over XI

(obtained as a pull-back from Gr
|I|
G over X(|I|)), and let

o

GrI
G be its restriction to

o

XI . By a slight abuse of notation, we shall denote by ∆I and
o

∆I the embeddings
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of GrI
G and

o

GrI
G into GrJd

G , respectively. The basic factorization property of the

affine Grassmannian (cf. [11], Sect. 5) is that we have a canonical isomorphism

o

GrI
G ≃ (GrG,X)×I | o

XI
.

Consider the perverse sheaf R�I
X | o

GrI
G

, and let us denote by
o

RI
X its *-direct

image under
o

∆I :
o

GrI
G → GrJd

G . From (14) we obtain that for any surjection

I � I ′ with |I ′| = |I| − 1 there exists a naturally defined map

o

RI
X →

o

RI′

X .

By appropriately choosing the signs (cf. [2], 3.4.11), we obtain a complex of

perverse sheaves on GrJd

G , which we will denote by C•(Rd
X), and whose k-th

term is ⊕

I,|I|=d−k

o

RI
X .

By essentially repeating the proof of Lemma 2.4.12 of [2], we obtain the

following:

Lemma 7.6: The complex C•(Rd
X) is acyclic of degree 0.

Let us denote by fRd
X the 0-th cohomology of C•(Rd

X).

Remark: The perverse sheaf fRd
X has been introduced by A. Beilinson in the

construction of automorphic sheaves using a “spectral projector”.

7.7. We shall now construct a version of fRd
X that lives on Grd

G instead of

GrJd

G , which we will denote by fR
(d)
X . Let us denote by symd the natural map

GrJd

G → Grd
G. If we worked with sheaves with characteristic 0 coefficients, we

would define fR
(d)
X as Σd-invariants in (symd)!(

fRd
X). In the case of arbitrary

coefficients, we proceed as follows.

We define fR
(d)
X as the kernel of the map

((symd)!(C0(Rd
X)))Σd

→ ((symd)!(C1(Rd
X)))Σd

,

where the subscript “Σd” means Σd-coinvariants, taken in the category of

perverse sheaves.

By construction, fR
(d)
X has the following factorization property. For a

partition d : d = d1 + · · ·+ dm, we have an isomorphism

(15) fR
(d)
X |X(d)

disj
×

X(d)
Grd

G

≃ (R
(d1)
X � · · ·�R(dm)

X )|
X

(d)
disj

×
X(d)

(Gr
d1
G
×···×Grdm

G
)
,
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under the identification

X
(d)
disj ×

X(d)

Grd
G ≃ X

(d)
disj ×

X(d)

(Grd1

G × · · · ×Grdm

G ).

Consider the complex C•(R(d)
X ), whose terms are given byCk(R

(d)
X ) := ((symd)!(Ck(Rd

X)))Σd
.

Note that the k-term is a *-extension of a complex on Grd
G, which is supported

over the locus of codimension k in X(d), corresponding to the collision pattern

of points.

Proposition 7.8: The complex

fR
(d)
X → C0(R

(d)
X )→ C1(R

(d)
X )→ · · · → Cd−1(R

(d)
X )

is acyclic.

Proof: The assertion is evidently true for d = 2 and we proceed by induction.

By (15), we can assume that the complex in question is acyclic off the preimage

of main diagonal ∆: X →֒ X(d).

Since the last arrow Cd−2(R
(d)
X ) → Cd−1(R

(d)
X ) is surjective, the assertion of

the proposition is equivalent to the fact that the map

hd−1(∆!(fR
(d)
X ))→RX ,

resulting from the above complex, is an isomorphism.

Consider the perverse sheaf ((symd)!(
fRd

X))Σd
on Grd

G, which maps naturally

to fR
(d)
X . Both the kernel and the cokernel of this map are supported over the

preimage of the diagonal divisor in X . Therefore, the map

(16) hd−1(∆!((symd)!(
fRd

X))Σd
)→ hd−1(∆!(fR

(d)
X ))

is surjective.

However, it is easy to see that

hd−1(∆!((symd)!(
fRd

X))Σd
) ≃ ∆∗(RX),

and the resulting composition

RX → hd−1(∆!(fR
(d)
X ))→RX

is the identity map. Hence, the map of (16) is an isomorphism.
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7.9. Let us introduce the hybrid category Rep(Ǧ, PG
d

(Grd
G)), which consists

of Gd-equivariant ind-perverse sheaves T on Grd
G, such that for every partition

d : d = d1, . . . , dn the pull-back of T to X
(d)
disj ×

X(d)

(Grd1

G × · · ·×Grdm

G ) carries an

action of Ǧ×m, such that conditions, parallel to 1) and 2) in the definition of

P Ǧ,d hold. By construction, fR
(d)
X is an object of Rep(Ǧ, PG

d

(Grd
G)).

We define the functor

T ′ 7→ T ′Ǧ: Rep(Ǧ, PG
d

(Grd
G))→ Ind(PG

d

(Grd
G)),

which sends T ′ to its maximal sub-ind perverse sheaf, on which all the actions

of Ǧ×m are trivial.

For an object K ∈ P Ǧ,d consider

s∗(K)
!
⊗fRX [−d] ∈ Rep(Ǧ, PG

d

(Grd
G)),

where s denotes the projection Grd
G → X(d), and where

!
⊗ denotes the functorD (D (·) ⊗ D (·)).

We define the functor Fd: P Ǧ,d → Ind(PG
d

(Grd
G)) by

T 7→ (s∗(K)
!
⊗fRX [−d])Ǧ.

Let 1Grd
G

denote the unit section of Grd
G. If T ′ is an object of

Rep(Ǧ, PG
d

(Grd
G)), then h0(1!

Grd
G

(T ′)) is naturally an object of Ind(P Ǧ,d).

For T ∈ PG
d

(Grd
G), we can consider fR

(d)
X ⋆

Grd
G

T as an object of

Rep(Ǧ, PG
d

(Grd
G)), where ⋆

Grd
G

refers to the convolution on PG
d

(Grd
G) (as op-

posed to the one, involving d = d1 + d2, as was the case in Sect. 2).

We define the functor G
d: PG

d

(Grd
G)→ Ind(P Ǧ,d) by

T 7→ h0(1!
Grd

G

(fR
(d)
X ⋆ T )).

Proposition 7.10: The functors Fd and Gd map to PG
d

(Grd
G) and P Ǧ,d,

respectively, and are mutually inverse equivalences of categories.

The proof of this proposition essentially repeats that of Proposition 7.2, using

the properties of fR
(d)
X established in the previous subsection. This establishes

the equivalence P Ǧ,d ≃ PG
d

(Grd
G), stated in Theorem 2.6. It remains to show

the compatibility of this equivalence and the ⋆ operations in (2) and (3).
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For d = d1 + d2, we have a natural morphism fR
(d1)
X ⋆ fR

(d2)
X → fR

(d)
X . It

gives rise to a functorial morphism, defined for K1 ∈ P Ǧ,d1 , K2 ∈ P Ǧ,d2 :

F
d1(K1) ⋆ F

d2(K2)→ F
d(K1 ⋆K2).

To show that the latter morphism is an isomorphism, we decompose Grd
G with

respect to the diagonal stratification of X(d), and the assertion follows from the

fact that the isomorphism of Proposition 7.2 intertwines the convolution of G-

equivariant perverse sheaves with tensor products of objects of P Ǧ,1.
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